50 research outputs found

    Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador

    Get PDF
    Samples taken from sedimentary archives indicate that fungal non-pollen palynomorphs (NPPs) can be used to provide information on forest cover, fire regime, and depositional environment in the eastern Andean flank montane forest of Ecuador. Within the 52 samples examined, 54 fungal NPP morphotypes are reported, of which 25 were found to be previously undescribed. Examination of fungal NPPs over a gradient of forest cover (2–64%) revealed three distinct assemblages: (1) low (Neurospora, IBB-16, HdV-201, OU-102, and OU-110 indicative of an open degraded landscape; (2) medium (8–32%) forest cover Cercophora-type 1, Xylariaceae, Rosellinia-type, Kretzschmaria deusta, Amphirosellinia, Sporormiella, and Glomus suggestive of a forested landscape disturbed by herbivores and soil erosion; and (3) high (32–63%) forest cover Anthostomella fuegiana, OU-5, OU-101, OU-108, and OU-120. Environmental variables for forest cover (forest pollen), available moisture (aquatic remains), regional fire regime (microcharcoal), and sediment composition (organic carbon) were found to explain ~40% of the variance in the fungal NPP data set. Fire was found to be the primary control on fungal NPP assemblage composition, with available moisture and sediment composition the next most important factors

    Enumeration of idempotents in planar diagram monoids

    Get PDF
    We classify and enumerate the idempotents in several planar diagram monoids: namely, the Motzkin, Jones (a.k.a. Temperley-Lieb) and Kauffman monoids. The classification is in terms of certain vertex- and edge-coloured graphs associated to Motzkin diagrams. The enumeration is necessarily algorithmic in nature, and is based on parameters associated to cycle components of these graphs. We compare our algorithms to existing algorithms for enumerating idempotents in arbitrary (regular *-) semigroups, and give several tables of calculated values.Comment: Majorly revised (new title, new abstract, one additional author), 24 pages, 6 figures, 8 tables, 5 algorithm

    Island resource exploitation by the ancient Maya during periods of climate stress, Ambergris Caye, Belize

    Get PDF
    Ancient Maya societies experienced a period of reorganisation and change in settlement patterns associated with social and climate instability at the end of the Classic period (750-1000 CE) and the subsequent Postclassic period (1200-1500 CE). Although it has been proposed that severe droughts and the breakdown of Classic political systems caused a migration of populations towards the coast, we have little evidence of the nature of land-use at coastal sites. Our understanding of subsistence on islands has been shaped by archaeological research indicating marine-based diets, with maize imported from the mainland. Here we provide, for the first time, palaeoecological proxy data that inform on ancient Maya land-use on an island site, located on Ambergris Caye, Belize. Using pollen and charcoal proxies, we present over 6000 years of environmental change and land-use history. Our reconstruction reveals evidence of cultivation, beginning at 2900 BCE and culminating during the Postclassic Period. We demonstrate that periods of higher land-use intensity correlate with climate instability, which corroborates archaeological evidence of migration to coastal locations. We hypothesize that the diverse marine and terrestrial environments of the island provided sustainable resources for the mainland Maya to use during times of both political and climatic stress

    Sex-dependent influence of endogenous estrogen in pulmonary hypertension

    Get PDF
    Rationale: The incidence of pulmonary arterial hypertension (PAH) is greater in women suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males exogenously administered estrogen can protect against PH; however in models that display female susceptibility estrogens may play a causative role. Objectives: To clarify the influence of endogenous estrogen and gender in PH and assess the therapeutic potential of a clinically available aromatase inhibitor. Methods: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH; the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of gender on pulmonary expression of aromatase in these models and in lungs from PAH patients. Results: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was due to reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor alpha also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased BMPR2 and Id1 expression compared to male. Anastrozole treatment reversed the impaired BMPR2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared to male. Conclusions: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential

    A sex-specific microRNA-96/5HT1B Axis influences development of pulmonary hypertension

    Get PDF
    Rationale: Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation. Objectives: We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH. Methods: Expression levels of miRNAs targeting genes related to PAH, estrogen, and serotonin were determined by quantitative RT-PCR in hPASMCs and mouse PASMCs harboring a heterozygous mutation in BMPR-II (BMPR-IIR899X+/− PASMCs). miRNA-96 targets 5-HT1BR and was selected for further investigation. miRNA target validation was confirmed by luciferase reporter assay. Precursor miRNA-96 was transfected into hPASMCs to examine effects on proliferation and 5-HT1BR expression. The effect of a miRNA-96 mimic on the development of hypoxic pulmonary hypertension in mice was also assessed. Measurements and Main Results: miRNA-96 expression was reduced in BMPR-IIR899X+/− PASMCs from female mice and hPASMCs from female patients with PAH; this was associated with increased 5-HT1BR expression and serotonin-mediated proliferation. 5-HT1BR was validated as a target for miRNA-96. Transfection of precursor miRNA-96 into hPASMCs reduced 5-HT1BR expression and inhibited serotonin-induced proliferation. Restoration of miRNA-96 expression in pulmonary arteries in vivo via administration of an miRNA-96 mimic reduced the development of hypoxia-induced pulmonary hypertension in the mouse. Conclusions: Increased 5-HT1BR expression may be a consequence of decreased miRNA-96 expression in female patient PASMCs, and this may contribute to the development of PAH

    Pre-Columbian fire management and control of climate-driven floodwaters over 3,500 years in southwestern Amazonia

    Get PDF
    In landscapes that support economic and cultural activities, human communities actively manage environments and environmental change at a variety of spatial scales that complicate the effects of continental-scale climate. Here, we demonstrate how hydrological conditions were modified by humans against the backdrop of Holocene climate change in southwestern Amazonia. Paleoecological investigations (phytoliths, charcoal, pollen, diatoms) of two sediment cores extracted from within the same permanent wetland, ∼22 km apart, show a 1,500-y difference in when the intensification of land use and management occurred, including raised field agriculture, fire regime, and agroforestry. Although rising precipitation is well known during the mid to late Holocene, human actions manipulated climate-driven hydrological changes on the landscape, revealing differing histories of human landscape domestication. Environmental factors are unable to account for local differences without the mediation of human communities that transformed the region to its current savanna/forest/wetland mosaic beginning at least 3,500 y ago. Regional environmental variables did not drive the choices made by farmers and fishers, who shaped these local contexts to better manage resource extraction. The savannas we observe today were created in the post-European period, where their fire regime and structural diversity were shaped by cattle ranching

    Incorporating a palaeo-perspective into Andean montane forest restoration

    Get PDF
    Reference ecosystems used in tropical forest restoration lack the temporal dimension required to characterise a mature or intact vegetation community. Here we provide a practical ‘palaeo-reference ecosystem’ for the eastern Andean forests of Ecuador to complement the standard ‘reference ecosystem’ approach. Pollen assemblages from sedimentary archives recovered from Ecuadorian montane forests are binned into distinct time periods and characterised as 1) Ancient (pre-human arrival), 2) Pre-European (Indigenous cultivation), 3) Successional (European arrival/Indigenous depopulation), 4) Mature (diminished human population), 5) Deforested (re-colonisation), and 6) Modern (industrial agriculture). A multivariate statistical approach is then used to identify the most recent period in which vegetation can be characterised as mature. Detrended correspondence analysis indicates that the pollen spectra from CE 1718-1819 (time bin 4 – Mature (diminished human population)) is most similar to that of a pre-human arrival mature or intact state. The pollen spectra of this period are characterised by Melastomataceae, Fabaceae, Solanaceae and Weinmannia. The vegetation of the 1700s, therefore, provides the most recent phase of substantial mature vegetation that has undergone over a century of recovery, representing a practical palaeo-reference ecosystem. We propose incorporating palynological analyses of short cores spanning the last 500 years with botanical inventory data to achieve more realistic and long-term restoration goals

    Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR) of a Drug Efflux Pump Operon

    Get PDF
    ABSTRACT The MtrCDE efflux pump of Neisseria gonorrhoeae contributes to gonococcal resistance to a number of antibiotics used previously or currently in treatment of gonorrhea, as well as to host-derived antimicrobials that participate in innate defense. Overexpression of the MtrCDE efflux pump increases gonococcal survival and fitness during experimental lower genital tract infection of female mice. Transcription of mtrCDE can be repressed by the DNA-binding protein MtrR, which also acts as a global regulator of genes involved in important metabolic, physiologic, or regulatory processes. Here, we investigated whether a gene downstream of mtrCDE , previously annotated gdhR in Neisseria meningitidis , is a target for regulation by MtrR. In meningococci, GdhR serves as a regulator of genes involved in glucose catabolism, amino acid transport, and biosynthesis, including gdhA , which encodes an l -glutamate dehydrogenase and is located next to gdhR but is transcriptionally divergent. We report here that in N. gonorrhoeae , expression of gdhR is subject to autoregulation by GdhR and direct repression by MtrR. Importantly, loss of GdhR significantly increased gonococcal fitness compared to a complemented mutant strain during experimental murine infection. Interestingly, loss of GdhR did not influence expression of gdhA , as reported for meningococci. This variance is most likely due to differences in promoter localization and utilization between gonococci and meningococci. We propose that transcriptional control of gonococcal genes through the action of MtrR and GdhR contributes to fitness of N. gonorrhoeae during infection. IMPORTANCE The pathogenic Neisseria species are strict human pathogens that can cause a sexually transmitted infection ( N. gonorrhoeae ) or meningitis or fulminant septicemia ( N. meningitidis ). Although they share considerable genetic information, little attention has been directed to comparing transcriptional regulatory systems that modulate expression of their conserved genes. We hypothesized that transcriptional regulatory differences exist between these two pathogens, and we used the gdh locus as a model to test this idea. For this purpose, we studied two conserved genes ( gdhR and gdhA ) within the locus. Despite general conservation of the gdh locus in gonococci and meningococci, differences exist in noncoding sequences that correspond to promoter elements or potential sites for interacting with DNA-binding proteins, such as GdhR and MtrR. Our results indicate that implications drawn from studying regulation of conserved genes in one pathogen are not necessarily translatable to a genetically related pathogen

    Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    Get PDF
    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accu- rately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides evidence of the role of non- climate drivers of vegetation change (volcanic events, fire regime and herbivory) during the late-Pleistocene. Multiproxy analysis (pollen, non-pollen palynomorphs, charcoal, geochemistry and carbon content) of the se- diments, radiocarbon dated to ca. 45–42 ka, provide a snap shot of the depositional environment, vegetation community and non-climate drivers of ecosystem dynamics. The geomorphology of the Vinillos study area, along with the organic‐carbon content, and aquatic remains suggest deposition took place near a valley floor in a swamp or shallow water environment. The pollen assemblage initially composed primarily of herbaceous types (Poaceae-Asteraceae-Solanaceae) is replaced by assemblages characterised by Andean forest taxa, (first Melastomataceae-Weinmannia-Ilex, and later, Alnus-Hedyosmum-Myrica). The pollen assemblages have no modern analogues in the tropical montane cloud forest of Ecuador. High micro-charcoal and rare macro-charcoal abundances co-occur with volcanic tephra deposits suggesting transportation from extra-local regions and that volcanic eruptions were an important source of ignition in the wider glacial landscape. The presence of the coprophilous fungi Sporormiella reveals the occurrence of herbivores in the glacial montane forest landscape. Pollen analysis indicates a stable regional vegetation community, with changes in vegetation population co- varying with large volcanic tephra deposits suggesting that the structure of glacial vegetation at Vinillos was driven by volcanic activity
    corecore